Source code for pytorch_lightning_spells.optimizers

import math
from collections import defaultdict

import torch
from torch.optim.optimizer import Optimizer, required


[docs] class RAdam(Optimizer): """RAdam optimizer, a theoretically sound variant of Adam. Source: `LiyuanLucasLiu/RAdam <https://github.com/LiyuanLucasLiu/RAdam/blob/master/radam/radam.py>`_ Under Apache License 2.0 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( "Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError( "Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): param['buffer'] = [[None, None, None] for _ in range(10)] defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): super(RAdam, self).__setstate__(state)
[docs] def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError( 'RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as( p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) state['step'] += 1 buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * \ state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state['step']) else: step_size = -1 buffered[2] = step_size # more conservative since it's an approximated value if N_sma >= 5: if group['weight_decay'] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_( exp_avg, denom, value=-step_size * group['lr']) p.data.copy_(p_data_fp32) elif step_size > 0: if group['weight_decay'] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) p_data_fp32.add_(exp_avg, alpha=-step_size * group['lr']) p.data.copy_(p_data_fp32) return loss
[docs] class Lookahead(Optimizer): '''Lookahead Wrapper * Code: `lonePatient/lookahead_pytorch <https://github.com/lonePatient/lookahead_pytorch/blob/master/optimizer.py>`_ * Paper: `Lookahead Optimizer <https://arxiv.org/abs/1907.08610>`_ Works best with `LookaheadCallback` or `LookaheadModelCheckpoint`. Args: optimizer (Optimizer): The inner optimizer. alpha (float, optional): The linear interpolation factor. 1.0 recovers the inner optimizer. Defaults to 0.5. k (int, optional): The number of lookahead steps. Defaults to 6. pullback_momentum (str, optional): Change to inner optimizer momentum on interpolation update. Defaults to "none". .. note:: Currently `pullback_momentum` only supports SGD optimizers with momentum. Raises: ValueError: Invalid slow update rate or invalid lookahead steps Example: >>> model = torch.nn.Linear(10, 1) >>> optimizer = Lookahead( ... torch.optim.SGD(model.parameters(), momentum=0.9, lr=0.1), ... alpha=0.5, k=6, pullback_momentum="pullback") ... >>> for _ in range(10): ... optimizer.zero_grad() ... loss = model(torch.rand(10)) ... loss.backward() ... optimizer.step() ... ''' def __init__(self, optimizer: Optimizer, alpha: float = 0.5, k: int = 6, pullback_momentum: str = "none"): if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') self.optimizer = optimizer self.param_groups = self.optimizer.param_groups self.alpha = alpha self.k = k self.step_counter = 0 assert pullback_momentum in ["reset", "pullback", "none"] self.pullback_momentum = pullback_momentum self.state = defaultdict(dict) self.defaults = {} # Cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['cached_params'] = torch.zeros_like(p.data) param_state['cached_params'].copy_(p.data) def __getstate__(self): return { 'state': self.state, 'optimizer': self.optimizer, 'alpha': self.alpha, 'step_counter': self.step_counter, 'k': self.k, 'pullback_momentum': self.pullback_momentum }
[docs] def zero_grad(self): self.optimizer.zero_grad()
[docs] def state_dict(self): return self.optimizer.state_dict()
[docs] def load_state_dict(self, state_dict): self.optimizer.load_state_dict(state_dict)
def _backup_and_load_cache(self): """Useful for performing evaluation on the slow weights (which typically generalize better) """ for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['backup_params'] = torch.zeros_like(p.data) param_state['backup_params'].copy_(p.data) p.data.copy_(param_state['cached_params']) def _clear_and_load_backup(self): for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.copy_(param_state['backup_params']) del param_state['backup_params']
[docs] def step(self, closure=None): """Performs a single Lookahead optimization step. """ loss = self.optimizer.step(closure) self.step_counter += 1 if self.step_counter >= self.k: self.step_counter = 0 # Lookahead and cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.mul_(self.alpha).add_( param_state['cached_params'], alpha=1.0 - self.alpha ) # crucial line param_state['cached_params'].copy_(p.data) if self.pullback_momentum == "pullback": if "cached_mom" in param_state: internal_momentum = self.optimizer.state[p]["momentum_buffer"] self.optimizer.state[p]["momentum_buffer"] = internal_momentum.mul_(self.alpha).add_( 1.0 - self.alpha, param_state["cached_mom"]) param_state["cached_mom"] = self.optimizer.state[p]["momentum_buffer"] elif self.pullback_momentum == "reset": self.optimizer.state[p]["momentum_buffer"] = torch.zeros_like( p.data) return loss